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y,= sl,y,= r,--a&). Here xg= cz(z,) is the equation of the boundary near the point x". The nature 
of the reasoning performed in this case is analoguous to that presented above. 
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INOPTIMIZATION PROBLEMS* 

A.P. SEIRANYAN 

The problem of maximizing the minimum eigenvalue of a selfadjoint matrix 
operator is considered. The case when the optimum eigenvalue is multiple, 
i.e. the problem of optimization is discontinuous, is investigated. This 
problem has interesting applications in the optimum design of constructions 
/l-6/. The necessary conditions for a local maximum of the eigenvalue of 
arbitrary multiplicity p with an ieoperimetric limit are obtained. The 
paper generalizes the results obtained in /7, 8/ for the single and double 
case. 

Consider the eigenvalue problem 

A Ihl t( = ;iB [hl tl (f) 

Here A [hl and B [hl are positive-definite symmetric m xm- matrices with coefficients 
"ij (h) and btj 04. which depends continuously on the components of the vector of the parameters 
h of dimensions n, LL is en eiqenvector of dimensions &and A is an eiqenvalue. 

Problem (1) has a complete system of eigenvectors ui (i= 1,2,...,m) and a sequence of 
eiqenvalues hi(i = 1,2,..r,m) corresponding to this system; we will assume that the orthoqonality 
condition is satisfied 

(B [h] ui, d) = 6ij (2) 

where &if is the Kronecker delta. Here and henceforth the parenthesis denote the scalar 
product of vectors. 

We will formulate the optimization problem as follows: it is required to obtain the vector 
of the parameters h=(h,,h,, . . . . h,) for which the minimum eiqenvalue h, of problem (1) reaches 
a maximum value under the conditions 
*Prikl.Matem.Mekhan.,51,2,349-352,1987 



F (h) = 0 

where F(h) is a continuously differentiable scalar 
Suppose the p-dimensional minimum eigenvalue 
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(3) 

function of a vector argument. 
h,=h,=...=lp<~p+l~hptad...~h,, l<p< 

m corresponds to a vector h, which satisfies condition (3). We will give the vector h an 

increment in the form of the vector Ek,(Ikl)= 1, k=(k,,k,,..., k,), where e is a small positive 

number. It follows from (3) that the vector k satisfies the condition 

(p, k) = 0, p = VP (4) 

As a result of the perturbation of the vector of the parameters, the multiple eigenvalue 

hl, and the eigenvectors ul, IL',...,&' obtain increments which have the form /9/ 
I h=h,+E~+s2~+o(e2),u=P+Eu’+e*u2+o(e~), (5) 

U" = Y1"'f y*ua + . . . + ypuP 
where u" is a linear combination of the eigenvectors ui (i= i,2,...,p). The coefficients Yi (i= 
1,2,...,~) remain to be determined from the equations of the method of perturbations. 

Substituting the expansions (5) into (1) we obtain, to a first approximation, 

Cu= + Au’ - h,Bu’ = ~Bu” (6) 
where C is a matrix with the coefficients cij = (Vaij, k) - h, (Vbij, k), V = (al&,, a/ah,, .., a/&,). kIultiplying 

(6) scalarly by u*(i= 1,2, . . . . P) we obtain a system of linear equations in the constants yi 

j$l (%j - Pd3j) Yj = O, i=f,Z,...,p; aif = (C.‘, uj) (7) 

For convenience we will introduce the vectors fij of dimensions R 

f”j = 5 ulliutj (va,t - h,Vb,,) 
1. t=1 

(8) 

where uai, L,' are the components of the eigenvectors Ui, UJ. Note that jij=jji, in view of 

the symmetry of aij, bij. Taking the notation (8) into account, the coefficients ai, from (7) 

can be written in the form CZij = @, k). 
Equating the determinant of the set of Eqs.(7) to zero, we obtain an equation for deter- 

mining p 
det 1 (f"', k) - t&j 11 = 0 (9) 

Hence, knowing the eigenvalue h, and the eigenvectors ui,i = i,z,...,p corresponding to 

this eigenvalue, we can calculate the vectors fij using (8), and from the vector of variation 

k from (9) we can calculate the variations 111, ~2, . . ..PP of the p-tuple eigenvalue h,. 

Assertion 1. If the vectors f", j'), ij = 1, 2,..., p; j > L (of all %p@+i)+1) are linearly 

independent, an improved variation k exists for which &>O, i= 1,2,...,p. 
Note that the linear independence of these vectors is only possiblewhen n>% p@+i)+i. 

Proof. Consider the system of linear equations in the components of the vector of 

varlatlons 4, k,, . . ., .%a 
(f’, k) = 0; (f’j, k) = GijVi”, ij = 1, 2, . . ., p; j > iJ 410) 

where viaare specified positive constants. If the vectors p, f", ij = i,2,...,P;j> i are linearly 

independent, the solution (10) exists for any yio, 'in particular when Q">o. Suppose the vector 

k is a solution of system (10); we will normalize this vector &= k/Uki. Then we obtain from 

Eqs. (9) and (10) ~i=@,@=viQ/IIkU>O (t=1,2 ,..., p), which also proves the possibility of con- 

structing the improved variation k, for which ~>0 (i=i,2,..., p). 
When n<%~ (p+ i)+i, the vectors P,f'j are always linearly dependent, and hence the 

improved variation cannot exist. 

In the case when the vectors p,jij(fj= 1,2,..., p;j>i) are linearly dependent, we will 

separate from them linearly independent vectors p,fl,p,...,fr-', where r is the rank of the 

matrix consisting of the vectors P,f", rgV,p@+l), and we will expand the remaining vectors fti 

in terms of them 

fij = eo*jP+ <:jfl+...+ r&f+1 w 
Note that the coefficients of the expansion are symmetrical: &ij=@ in view of the fact 

fij = fli_ Taking (4) and (11) into account, the coefficients ail of the matrix can be represented 

in the form 

aij = (f’j, k) = 3 Epl,; $=(f’, 4 
14 

(‘2) 

Assertion 2. If the vector of the parameter II which satisfy condition (3) make the 

minimum eigenvalue & with multiplicity p a maximum, it is necessary that: 

1) the vectors P,fa, i,j= 1,2,..., p; j>,i must be linearly dependent; 

2) the set of vectors I= (l,,l,,..., l,_,);,defined by the following conditions: a) D,D,>O, 
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D,D, 7 0. . , ., D,_,D,_, 70; D,>O, D&P-O, Da>0 ,..., Dp70,if p is even, or b) DJ&>O, D&,>%..., 
DpaDp 7 0; D, > 0, D, 7 0, . . ., D,, 7 0, if p is odd, must be empty. 

Here D,.D*, . . . . Dp are the principal minors of the matrix with coefficients a*$, ii- 1,2,...,~ 

Proof. The necessity of condition 1) follows from Assertion 1. Condition 2) denotes that 
the characteristic polynomial (9) will not have roots pi of fixed sign. The conditions on 
the principal minors a) or b) follow from the well-known necessary and sufficient conditions 
for symmetrical matrices to be positive-andnegative-definite /lo/. 

Note that a change in the sign of the variation k changes the signs of the first variations 
jQ(i= 1, 2,. ..I p). Hence, the lack of roots pi of fixed sign is the necessary condition for a 
maximum of h,. 

When condition (12) are satisfied in the (r-*)-dimensional space of the vectors I=(&,& 
.,.,Z,_r) inequalities a) or b) define regions the intersection of which must be empty. This 
imposes conditions on the coefficients of the expansions El'jfrom (11). These conditions are 
quite simple in the double case /7, 8,'. 

Note. The problem of maximizing the minimum eigenvalue, taking into account the multiplicity 
in a continuous formulation, was considered in /ll/, where the conditions of linear dependence 
of the form (11) were given in the following form: 

Here 041 are functions which play the role of the vectors fil in the notation used in this 

paper, and k*, yij are the coefficients of the expansions. However, the derivation of this 
condition is incorrect. In particular, it follows from condition (34) of /ll/, instead of 
(35) (condition (13)) that aij = conat (i,j = 1, z,.. ., n). 

After this paper went to press, paper /12/ was published. This was devoted to problems 
of optimizing eigenvalues taking their multiplicity into account when there are limitations 
in the form of the inequalities pi(z)< 0, i= 1,2, . . ..q. This fact changes the nature of the 
optimization problem. To take these limitations into account, a theorem on the incompatibility 
of linear inequalities was used in /12/. However, this paper contains a number of serious 
errors. 

Example. Consider the case when the matrix A is diagonal, and has p-tuple eigenvalues 
for the vector of the parameters h, while the matrix B is a unit matrix. in this case hi= 
Oli (h) = ?%I, i = 1, 2, . . .( p; @ii (h)> A,, p < i < I%. 

We will obtain the first corrections p of the p-tuple eigenvalue h, from Eq.(9j: w z (f'", 

k) (i = i, 2,. . ., p). The vectors ,f'j in this case are gradients of the eigenvalues iii, f'i = vaii (h). 
We will assume that they are linearly independent. 

The necessary condition for the optimality of (11) can be written in the form 

We will obtain the conditions imposed on the coefficients 5i. From conditions a) or b) of 
Assertion 2 we have the following inequalities: 

@a', k) (p", kf > 0, (t=, k) (f=‘, k) > 0, . . ., (I”l’pl. k) (Pp. k) > 0 (15) 

From (14) we express, for example, the vector 1" in terms of P, f'" (i = 2,3, +. .,p) and we 
substitute it into (15). AS a result we obtain 

- +- (f’l, k)a - + (Pa, k) (f”, k) -. . , - k (128, k). 
(‘6) 

(fPP k) > 0. (fit k) (fit” i+l, k) 2 0, * 9 I i-22, 3,...,p--i 

The set of vectors k, which satisfies conditions (16) and (4)‘ must be empty. Hence, we 
obviously have the inequalities 

hi61 > 0, i = 2, 3,. .., p (17) 

i.e. the conditions for the coefficients ci(i= 1,2,...,p) to be of fixed sign. Conditions (14) 
and (17) are the usual conditions for a maximin /13/. 

The results of this investigation were presented as a seminar held in January 1984 in a 
paper entitled Multiple Eigenvalues and the Lagrange Problem, Usp. Mat. Nauk, 39, 4(238),1994, 

The author thanks V.B. Lidskii for useful discussions. 
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